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Group Theory |
3.1 TheSquare
To investigate the symmetries of a square, it can be placed with its centre at the
origin of a Cartesian plane. The four corners of the square can be numbered to
note in which quadrants they lie when in this “starting position”.
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The quadrants are numbered from 1 to 4 in blue
The corners of the square are numbered from 1 to 4 in red

The first thing to do is “do nothing” !
Traditionally this is called the identity operation and is designated,

3.2 Rotational Symmetry

More interesting, is to define the operatroas “rotate 9%
(This will be anticlockwise, of course)

After applyingr the situation will look like this;
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Using permutation notatiorr, = 5 3 4 1

The second row shows in which quadrant each vertex is now located.

Two other symmetries of the square are “rotate’180d “rotate 270” which
can be defined a€ andr® respectively.
Thus, for exampler,2 means “rotate 90” and then “rotate®9@gain.

Notice thatr® = e



Here is a summary of the discussion so far;
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3.3 Mirror Symmetry
In addition to rotational symmetry, a square has mirror symmetry.
By definition let ¢ y be “reflection in the-axis”
¢ X be “reflection in thex-axis”
¢ p be “reflection in the line with positive gradiegity X
¢ n be “reflection in the line with negative gradient; — X"
This adds four more diagrams and permutations to the proceedings;
yA yA yA yA
2 1 2 1 2 1 2 1
1 2 3 4 4 1 2 3
:X :X :X :X
4 3 2 1 3 2 1 4
3 4 3 4 3 4 3 4
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Notice that,y2 = = p2 =q =e

3.4 TheOrder of aGroup

In total, eight symmetries of the square have been identified.

These will form a group of order 8, and the Cayley table for this group will be

an 8 by 8 grid. The symmetries can thus be combined under the binary operation
“followed by” in sixty-four different ways.

Foe example, one of the sixty-four is “rotation of &@llowed by reflection inx-axis”.

The Order of a Group
The order of a group is simply the number of elements in the set upon which
the binary operation acts.




3.5 An Example of Combining Symmetries
The result of combing two of the square's symmetries can be determined
mathematically by using permutation notation.

Show for a square that, using permutations, a rotation°dio@®wed by
a reflection in the-axis is equivalent to a reflection in the liye= — x

Teaching Video:http://www.NumberWonder.co.uk/v9108/3.mp4

Solution :
The three symmetries involved and their associated permutations are;
e Xis a reflection in the-axis
e ris arotation of 90
e nis areflection in the lingy = —x
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[ 4 marks]


http://www.NumberWonder.co.uk/v9108/3.mp4

3.6 The Cayley Tablefor a Square
Working through all possible pairs of ways of combining the symmetries of the
square gives rise to the following Cayley table.
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This is a well known group called the dihedral grdop,

It's alive with patterns such as,

¢ In any given row the eight possible symmetries occur once and once only

e In any given column the eight possible symmetries occur once and once only
Taken together this pattern is referred to as the Latin square property of a group.
All groups have this Latin square property buy not all Latin squares are groups.

In reading the Cayley table notice thhat r means da first which is ther in
the red row across the top of the table, ther second which is thein the
green column down the left hand side of the table. Top then tail.

Notice that whereas =« r = n, r * x = p. Thatisxr # rx



3.7 Exercise
Marks Available : 40

Question 1

Two permutations are
[ 12 3 4 5 [ 12 3 45
V= 34521)andw‘(21543

(1) Determine the composite permutation w

[ 2marks]

(i) Determine the composite permutationo v

[ 2marks]

(iii)  Forvdetermine the inverse permutatimvﬁ,1

[ 2marks]



Question 2
Show for a square that, using permutations, a reflection ix-alxes followed
by a rotation of 99is equivalent to a reflection in the line=x

In answering this question label the symmetries as follows;
e Xis a reflection in the-axis
e ris arotation of 90
e pis areflection in the ling/ = x

yA yA yA
2 1 2 1 2 1
3 4 1 4 4 1
;X =X =X
2 1 2 3 3 2
3 4 3 4 3 4
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[ 4 marks]



Question 3

3

The patterned square shown only has the symmetry, reflectionyrathe,y,

in addition to the “do nothing” identity,

(1) Complete the Cayley table for the group formedzby { e, y } under
the binary operation of composition of symmetries.

[ 1mark ]

(i)  The part (i) group is a subgroup of the group of symmetries of the

(unpatterned) square.

Here it is;
% @ r3 x | p| n
@@ r3 x | p|ln
r | r 2 e ply | x
r2| r?| r3 r y | n| p
r3| rd r? n| x|y
@@ n r2| r3| r
x| x P e | r | rd
p|p y r3| e | r?
n| n x r | r’l e

What is the order of this subgroup ?

[ 1mark ]



Question 4

Each of the following patterned squares gives rise to a symmetry group that is a
subgroup of the symmetry group of the (unpatterned) square.

For each patterned square, construct its associated Cayley table,

(i) (ii) (iii) (iv)
y
2 T 1 2
2 1 2
3 4 3
3 | 4 3
(v) (vi) (vii)
y y y
2 1
3 4

[ 14 marks]



Question 5

From questions 3 and 4, you should have unearthed that the symmetry group of
square, (which is of order 8), has five subgroups of order 2, and three subgroups

order 4.

The identity element on its own can also be considered a subgroup correspondin
to a patterned square with no symmetry, such as the example shown below.
It adds one subgroup of order 1 to the list of subgroups of the (unpatterned) squa

Finally, the whole group is considered to be a subgroup of itself.

That concession adds one subgroup or order 8.

Here is a summary of all subgroups found,;

Subgroup Order Number Found
{&} 1 1
{e.xt, {ev}
{e,p} {en}, 2 5
{er%}
{e r,r?r3}
{e 2 x, vy} 4 3
{e, %, p, n}
{er,r2r3 xy,p n} 8 1

There is a £5,000,000 prize for the person who finds a subgroup of the
symmetries of a square of order 3, 5, 6 or 7. It can never be claimed !

What rule does the table of results suggest holds between the order of a group

and the order of its subgroups ?

This rule is called Lagrange's Theorem.

[ 2marks]



Question 6
The diagram shows the six symmetries of an equilateral triangle where

¢ eis “do nothing” ¢ xis “reflection in thex-axis”
O ris rotation of 120 ¢ vis “reflection in thev-axis”
0 r2 is rotation of 240 O wis “reflection in thew-axis”
\ \ \
k2 k2 k2
1—» 1— 1—
X X X
3 3 3
W g W W g
(1 2 3 (1 2 3 2 (1 2 3
e‘123) r‘231) r‘(312)
\ Vv Vv
x kz X
3 2 1
— 11— — l— — 1—
X X X
2 1 3
3 3 3
W g W g W g
(1 2 3 (1 2 3 (1 2 3
X‘(132) V‘(321) W‘(213)

[ 6 marks]



Question 7

For the square, the following table of all possible subgroups was constructed,

Subgroup Order Number Found
{e} 1 1
{e.x}, {ey}
{e p} {e n} 2 5
{er%}
{e r,r2r3}
{e r? x vy} 4 3
{e, %, p, n}
{e,r,rz,r3,x,y, p, n} 8 1

Construct a similar table for all possible subgroups of the equilateral triangle.

[ 6 marks]
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